Temperature dependence of amyloid beta-protein fibrillization.
نویسندگان
چکیده
Fibrillogenesis of the amyloid beta-protein (Abeta) is believed to play a central role in the pathogenesis of Alzheimer's disease. Previous studies of the kinetics of Abeta fibrillogenesis showed that the rate of fibril elongation is proportional to the concentration of monomers. We report here the study of the temperature dependence of the Abeta fibril elongation rate constant, ke, in 0.1 M HCl. The rate of fibril elongation was measured at Abeta monomer concentrations ranging from 50 to 400 microM and at temperatures from 4 degreesC to 40 degreesC. Over this temperature range, ke increases by two orders of magnitude. The temperature dependence of ke follows the Arrhenius law, ke = A exp (-EA/kT). The preexponential factor A and the activation energy EA are approximately 6 x 10(18) liter/(mol.sec) and 23 kcal/mol, respectively. Such a high value of EA suggests that significant conformational changes are associated with the binding of Abeta monomers to fibril ends.
منابع مشابه
Small molecule inhibitors of aggregation indicate that amyloid beta oligomerization and fibrillization pathways are independent and distinct.
Alzheimer disease is characterized by the abnormal aggregation of amyloid beta peptide into extracellular fibrillar deposits known as amyloid plaques. Soluble oligomers have been observed at early time points preceding fibril formation, and these oligomers have been implicated as the primary pathological species rather than the mature fibrils. A significant issue that remains to be resolved is ...
متن کاملHsp104 targets multiple intermediates on the amyloid pathway and suppresses the seeding capacity of Abeta fibrils and protofibrils.
The heat shock protein Hsp104 has been reported to possess the ability to modulate protein aggregation and toxicity and to "catalyze" the disaggregation and recovery of protein aggregates, including amyloid fibrils, in yeast, Escherichia coli, mammalian cell cultures, and animal models of Huntington's disease and Parkinson's disease. To provide mechanistic insight into the molecular mechanisms ...
متن کاملTemperature-Dependent Structural Changes of Parkinson's Alpha-Synuclein Reveal the Role of Pre-Existing Oligomers in Alpha-Synuclein Fibrillization
Amyloid fibrils of α-synuclein are the main constituent of Lewy bodies deposited in substantial nigra of Parkinson's disease brains. α-Synuclein is an intrinsically disordered protein lacking compact secondary and tertiary structures. To enhance the understanding of its structure and function relationship, we utilized temperature treatment to study α-synuclein conformational changes and the sub...
متن کاملNew class of inhibitors of amyloid-beta fibril formation. Implications for the mechanism of pathogenesis in Alzheimer's disease.
The amyloid hypothesis suggests that the process of amyloid-beta protein (Abeta) fibrillogenesis is responsible for triggering a cascade of physiological events that contribute directly to the initiation and progression of Alzheimer's disease. Consequently, preventing this process might provide a viable therapeutic strategy for slowing and/or preventing the progression of this devastating disea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 21 شماره
صفحات -
تاریخ انتشار 1998